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Calculations of the core contributions to the Compton profiles for lithium (1s%, carbon (1s?),
and aluminum (2s%2p%) were made employing excited-state one-electron continuum wave func-
tions evaluated in the ground-state Hartree-Fock-Slater potential of the nucleus and remaining
electrons. Good agreement with the impulse approximation is obtained. Measurements of
the Compton profiles of lithium metal, graphite, and aluminum metal were made with Mo K«
radiation and the core contributions were separated from the valence electron contributions.
The Compton profiles for the core electrons [1s? for lithium and carbon, 2522p6 for aluminum
(1s? not excited)] were in fair agreement with the calculations. Total Compton cross sections
(integrated over the Compton profile) were calculated in the impulse approximation and compared
to the Waller-Hartree theory with and without the Bonham corrections. The agreement can be
quite poor, differing at low angles by as much as a factor of 3.

I. INTRODUCTION

The recent interest in Compton profile measure-
ments'~* makes it desirable to explore methods that
enable one to separate the core electron contribu-
tion from that of the valence electeons. In solids
where valence electrons undergo very pronounced
changes in their momentum distributions from free
atoms, the Compton profile provides a most critical
test of band wave functions. Onthe other hand, the
core electrons differ very little between free atom and
solid so that a Hartree-Fock free-atom calculation
for the core electrons should suffice to determine
their contribution to the Compton profile in the
solid. Calculations of the core contributions have
been made for Hartree-Fock wave functions employ -
ing the so-called impulse approximation.' Eisen-
berger and Platzman® have studied the validity of
the impulse approximation in the case of the hydro-
genic atom. It is our purpose in Sec. II to extend
the theoretical comparison to the many-electron
atom as well as to compare theory with experiment
for core electrons.

In addition, the theoretical total free-atom cross
sections (integral over final photon frequencies) in
the impulse approximation are compared in Sec.

III withthetotal cross sections in the Waller-Har-
tree® approximation with and without the higher-
order corrections suggested by Bonham. ®

|

II. DIFFERENTIAL CROSS SECTION

Theory

To lowest order, the differential cross section
for Compton scattering from an N-electron atom
arising from the A? interaction (A = vector poten-
tial) of the electron with the electromagnetic field
is
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where €, and €, are the final and initial energies of
the system, w; and w, the initial and final photon
energies, S and w the momentum and energy trans-
fers, K is the dot product of the incident and scat-
tered polarization vectors,

- 2 1/2
|S(w)| = 2w, sing [1—%14-((%) 48—-—11125-] R
and 6 is one-half the scattering angle. The & func-
tion signifies conservation of energy. For condi-
tions ordinarily met in practice, i.e., x-ray en- _
ergies of 20 keV and elements up to Z=30the p-A

term in the interaction is small since the x-ray
energy is not near any absorption edge.
Let us take the initial state 10) as a single de-
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terminant of one-electron orbitals and the final
states | f) as the same determinant with only one
orbital, say, |k), being replaced by an excited
state |g). The |g)’s are one-electron eigenstates
in the ground-state potential V(T) of the nucleus and
remaining electrons. Equation (1)thenreducesto

dz(T _( ea >2 2 Wy [ 37 2
dnas~ (meet) K22 2 [csle® )

X8, —€x—w)dg, (2)

where €, and ¢, are the orbital energies of |g) and
|k), respectively. The replacement of ¢, - ¢q by
€, — €, in the argument of the 6 function is consis-
tent with the one-electron picture presented here.
For a spherical potential V(»), Eq. (2) can be eval-
uated’ using final-state continuum functions of the
type

Vo (T)=gy(r,€) YT (6, 0), (3)

where the Y"‘(9 ¢) are the spherical harmonics

and the g,(7, €) are solutions of
1 d?® (1+1
< PR V(r)+ —(2%2—)—-e)rg,(1’,€h0 .
Letting

- dn
Joez faee.

the expression for the cross section becomes
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where € now stands for €,+ w and dn/de is the den-
sity of (I, m) states. For light atoms the sum over
k will involve mostly s and p states, so that for
each k and /, selection rules permit only one or two
terms from the partial expansion of e to con-
tribute. The density of states is determined by
allowing g, to vanish at the surface of a sphere of
radius R. For » large,

sin(Ver+ylny+n,) )
Ver ’

where 7, is a phase shift and the term in Iny arises
from the Coulomb tail of the potential. As R—
the density of states becomes

dn R
de 21Ve ’ ©

and from Eq. (5)

g7, €)=

R
J, gl e rPar=R/2¢ . )
Finally for an electron initially in an s state with
the radial wave function ¥ (») and with energy ¢,
we have

® 2
f gi(7r; s+ w) 1,(SN Y, (v) ridr| (8)
0

excited-state approximation, while the contribution from a filled shell of six p electrons gives for the ex-

cited-state approximation
d% <

1=0

The numerical calculations were performed to
sufficiently large values of » so that the WKB ap-
proximation could then be used to obtain the nor-
malization of Eq. (5). The normalized WKB ap-
proximation is

~ 1 cos {f[e - w(r)]"%dr’ +n}
&(n =g T Ver ’
(10)
where 7 is a phase shift and W(»)= V(») +1(1+1)/72.

On the other hand, for a closed shell the impulse
approximation gives

2
M‘m(mc > Kz:’)_f(é’+w)1/z 5 ((l+1)|f gir;e +w)],,,1(81')\1',(r)1' d‘r
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with
J@=2n [, x| pap (12)

where the sum i runs over all occupied orbitals.
The x,(p) are the one-electron ground-state mo-
mentum wave functions, normalized to

7 Jo p)|2ptdp=1. (13)

The variable z is defined as
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FIG. 1. The measured core electron (1s%) Compton profile for lithium together with the theoretical profiles in the impulse
[Eq. (12)] and the excited-state approximation [Egs. (8) and (9)].

z(w)=mw/|S| -|S|/2. (14)

In a semiclassical picture z represents the com-
ponent along S of the scattering electron’s initial
momentum.

The two calculations are compared in Figs. 1-3
for Li, C, and Al and are found to be in good mu-
tual agreement. Of course the great advantage of
the impulse approximation is that the cross sec-
tion [Eq. (12)] explicitly involves only the ground-
state wave functions.

Experiment

Compton profile measurements were made on
lithium metal (polycrystal), aluminum metal (poly-
crystal), and on pyrolytic graphite employing
Mo Ka radiation scattered, respectively, 155°,
120°, and 160° from the three samples. After
subtracting background and making a small K,
correction, the a; — o, separation was made by the
Rachinger® method. Between 20000 and 100 000
X rays were accumulated per point near the Comp-
ton peak at intervals of 0.02° 26 employing a LiF
(400) crystal as an analyzer. The technique is
identical to that described earlier. °

The separated Ka, profiles were resolved into
core and valence electron contributions by making
use of the following guides:

(i) The valence electrons have a sufficiently

small binding energy so that the impulse approxi-
mation is quite accurate. Hence, the valence elec-
tron profile is symmetric about the center of the
line.

(ii) For the large values of 1S used, the area
under the profiles can be normalized to (cf. Sec. II)

- (el o () B () -]},
(15

where N,(N,) is the number of valence (core) elec-
trons per atom.

(iii) The core contribution is a very smoothly
varying curve similar to that given by the impulse
approximation while the valence contribution, in
addition to being symmetric, is everywhere = 0.

Using the above normalization conditions and the
symmetry requirement for the valence profile, one
can determine an experimental core profile J,(z)
by a trial and error method taking the impulse ap-
proximation core profile as a starting point. Strict-
ly speaking, such a profile is not unique. However,
the requirement that the J,(z) be reasonably smooth
and such that

Jr(z)>d (2)>0 [J7(z)=total profile]

for all values of z, leaves indeed very little choice.
Whatever uncertainty subsisted was added to the
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FIG. 2. The measured core electron (1s2) Compton profile for carbon (graphite) together with the theoretical profiles in
the impulse [Eq. (12)] and excited-state approximation [Egs. (8) and (9)].

experimental uncertainties.

As it turned out, the departures from the im-
pulse approximation were small. The separated
experimental curves are given in Figs. 1-3 for Li,
C, and Al, respectively, and show good agreement
with theory. Only the lithium core shows a small
departure from the impulse approximation. The
lithium data were the most accurate of the three
since the valence electron contribution was the
smallest.

From the above results as well as from earlier
work on Be, 7 it appears that depatures from the
impulse approximation are small (even for core
electrons) and that the use of free-atom wave func-
tions in the impulse approximation yields a Comp-
ton profile for the core electrons accurate to a few
percent. Compton profiles have been published for
Hartree-Fock free-atom wave functions in the im-
pulse approximation for elements Li through Ge. !°

III. TOTAL CROSS SECTION

If we integrate Eq. (1) over final photon frequen-
cies, we obtain the total cross section. The sim-
plest and earliest known case considered is the
scattering by a free electron. For an electron ini-
tially at rest in the laboratory frame we have the
well-known Klein-Nishina formula, which for or-
dinary x rays reduces to

2 \2 0\2

=) () 1o
where (w)/w,)? is commonly referred to as the
Breit-Dirac factor. The superscript to the final
photon energy w is employed to designate the
special case of the electron initially at rest. For
such a case the final photon energy is related to the
initial energy by Compton’s formula:

0 w1

wy= W . (17)
Equation (16) is often written in terms of the wave-
length change AX upon scattering [AX = (2h/mc)
xsin]. Within the independent-particle model (cf.
Sec. II), Eq. (16) can be extendedto a Z-electron
system yielding the well-known Waller-Hartree®
expression

do <ez )2 2<wg>2{ S 2
—=(—=) KA\ 2 ) 2-2 fii- 2
d me Wy i:lf“ f#jf”

- ((;’_g)wﬂ , (18)

where }’ extends over all couples of occupied or-
bitals of the same spin. The Breit-Dirac factor

was inserted artificially into Eq. (18) in order to
reach consistency with Eq. (16) in the free-elec-
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FIG. 3. The measured core electron
(2522p%) Compton profile for aluminum
together with the theoretical profiles in
the impulse [Eq. (12)] and excited-state
approximation [Eqs. (8) and (9)]. In-
cluded are the 2s? and 2p° excited-state
approximation profiles. The 1s% are not
excited over the range of interest of the
profiles.

tron case. However, following Bonham’s method®
of time-dependent perturbation theory, first- and
second-order correction terms to the Waller-
Hartree expression have been calculated as

do do
Q = (ﬁ)wﬁ-f- 61+62 N (19)

2 \2 2 £
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where E, is the total electronic energy of the sys-
tem. The inclusion of 6, in Eq. (18) yields

do ~ ez 2 2 ﬂg_ 2 5 2 , L2
T-(W) K {Z<w1) _{;1 Fu —4§1 fu} )
(22)
so that the Breit-Dirac factor is now naturally in-
cluded.

Finally it is also possible to express the total
cross section in the impulse approximation as an
integral over the Compton profile. For each one-
electron orbital 7 we have

(82) ) e[ 2 s,
asy ‘_ W |e‘| [OF} | S| 1&1aw,

where Eq. (14) expresses the relationship between
z and w. The integral runs from the one-electron
binding energy |€;| to an upper limit of the incident
photon energy.

In Table I are listed some representative total
cross sections in the Waller -Hartree theory and
for the integrated profile in the impulse approxi-
mation together with the first- and second-order
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TABLE I. The total Compton cross sections do/dS in
electron units for Li and Ge in the Waller-Hartree theory,
the Bonham corrections §; [Eq. (20)] and 6, [Eq. (21)] to
the Waller-Hartree theory (Mo Ka), and the total cross
section obtained from an integration of the Compton pro-
files in the impulse approximation.

w
=
=
£

Li |Eyl =202 eV Ge |E,l =56 400 eV

> |

WH Impulse WH 61 [ Impulse

0 0 0 0 0 0.073 0
0.1 1.05 1.00 1.59 —0.02 0.075 5.72
0.2 1.44 1.47 4.73 -=0.074 0.08 9.05
0.3 1.82 1.96 7.34 =0.15 0.08 11.2
0.4 2,16 2.32 9.91 -0.24 0.10 13.1
0.5 2.42 2.54 12.3 —-0.34 0.12 14.7
0.6 2.60 2.66 14.4 —-0.44 0.15 16.2
0.7 2.70 2.73 16.0 -0.53 0.19 17.5
0.9 2.76 2.76 18.5 -0.75 0.30 18.4
1.1 2.74 2,73 20.2 —0.98 0.46 20.4

1641<0.03

1651<0.02

Bonham corrections to the Waller-Hartree theory.

As can be seen in Table I, the difference be-
tween the Waller-Hartree theory even with the cor-
rections by Bonham can be large [for example, at
(sing)/x=0.1 A™! for Ge]. It is obviously desirable
to have measurements to evaluate the two theories.
A more complete set of tables of total Compton
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cross sections are available from one of the authors
(R.J.W.).

IV. CONCLUSION

The most important point suggested by our re-
sults is that the impulse approximation for core
electrons provides a convenient scheme for sub-
tracting their contributions from the observed
Compton profiles. 3Since the valence electron con-
tribution is only sizable near the Compton peak,
the error in separating the valence electron profile
from the core can probably be kept to a few per-
cent,

The total cross sections as calculated in the
Waller-Hartree approximation and the impulse ap-
proximation can differ greatly but not at the large
values of (sinf)/X employed in Compton profile
measurements. Thus, absolute normalization of
the profiles can be done to within a few percent
when conditions are chosen such that (sinf)/x>1.0
A
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The band structure, Fermi surface, and density of states from an augmented-plane-wave

calculation of titanium are presented and compared with previously reported results.

The

present calculation differs from the earlier work in that the potential is a self-consistent
muffin-tin form and further in that the coefficient of the Slater exchange term is § instead of 1.

I. INTRODUCTION

The aims of the present calculation are (i) to ob-
tain the self-consistent-potential energy bands and
Fermi surface of titanium within the muffin-tin

one -electron potential-energy form! for comparison
with a previous “one-shot” calculation, 2 (ii) to de-
termine the effect on the self-consistent energy
eigenvalues at the I' point for various choices of

the parameter « in the xa-method® exchange poten-



